
CcNav: Understanding Compiler Optimizations in Binary Code
Supplemental Materials

Sabin Devkota, Pascal Aschwanden, Adam Kunen, Matthew Legendre, and Katherine E. Isaacs

1 FULL HIERARCHICAL TASK ANALYSIS

We include the full task hierarchy derived from our task analysis. Yet
undefined terms are described below.

Goal: Understand performance / Identify optimizations

T1 Understand/Identify compiled structure

T1.1 Match source code with binary code
T1.2 Identify/Relate structures with code

T1.2.1 Identify loops
T1.2.2 Identify functions

T1.3 Annotate relations
T1.3.1 Annotate registers with variables
T1.3.2 Annotate loops & loop internal structure

T1.4 Trace variable

T2 Understand optimizations

T2.1 Find areas of interest
T2.1.1 Overview of binary code
T2.1.2 Winnow code
T2.1.2.1 Winnow to specific loop
T2.1.2.2 Winnow to function
T2.1.2.3 Winnow to line of code
T2.1.2.4 Winnow based on performance metric
T2.1.3 Identify anomalous code

T2.2 Identify optimizations
T2.2.1 Identify inlining
T2.2.2 Identify vectorization
T2.2.3 Identify code hoisting
T2.2.4 Identify loop unrolling

T2.3 Assess optimizations
T2.3.1 Assess amount of optimization present
T2.3.2 Relate to performance metrics

T2.4 Compare generated code
T2.4.1 Compare code with different optimizations
T2.4.2 Compare code with different source
T2.4.3 Compare code with different compilers

T2.5 Annotate optimizations

Loop internal structure refers to instructions related to the loop
body (what performs the computation) and the preamble and postamble
(which manage the iteration).

Code hoisting is another optimization which moves a computation
out of its enclosing loop when the computation is unnecessary to repeat.

• Sabin Devkota and Katherine E. Isaacs are with University of Arizona.
E-mail: {devkotasabin@email.arizona.edu | kisaacs@cs.arizona.edu} .

• Pascal Aschwanden, Adam Kunen, and Matthew Legendre are with LLNL.
E-mail: {aschwanden1 | kunen1 | legendre1}@llnl.gov .

We did not have a real example of expected code hoisting, so we did
not prioritize this optimization.

Anomalous code is ill-defined. Presently it is described as “I’ll know
it when I see it.”

Performance metrics can be real or simulated measures of actual
performance. We expect this will require extending our automated
analysis. It is not addressed by this paper.

2 BASIC EVALUATION TASKS COMPLETED BY P0 AND P1
Our evaluation sessions with participants P0 and P1 included several
basic evaluation tasks. We decided to not repeat those in the sessions
with P2 and P3 because (1) P0 and P1 had completed them easily and
(2) we wanted to afford more time to the tasks that were closer to a real
analysis session. We list the basic tasks completed by P0 and P1 here:

• Find a specific line in the source code.

• Given the line of source code, find the function that contains it.

• Given a function, what functions are inlined inside of it?

• Given a loop, what function calls are made in it?

2.1 Extended Evaluation Task Descriptions
We provide our detailed observations regarding the pair analytics ac-
tions of our participants below.

E1: Identify the assembly of a loop containing a selected line of
source code. Because a loop spans multiple lines and the mapping
between source code and disassembly is imperfect, this task has an im-
plication beyond straightforward highlighting. All participants started
by asking to click on the first line of the loop, highlighting the corre-
sponding code, and continued their analysis without pause.

P0, P1, and P2 next examined the loop hierarchy view. P0 noted the
source code line is the top of a quadrupally nested loop which was not
fully depicted in the loop hierarchy. The facilitator clarified that the
source code-to-disassembly mapping only maps the clicked line of the
loop and not the whole body. P0 asked to click on the top level loop
shown in the loop hierarchy. This selected the whole loop body in the
source and showed the complete nesting in the hierarchy.

P1 guessed the correct loop by looking at the partial loop hierarchy,
reasoning, “Loop 3 must be the outer loop, so 3.1 must be the one we’re
on.” To verify, they asked to click on Loop 3.1 and noted the one-to-
one correspondence with the source code loops. P2, on the other hand,
asked to perform a range search by dragging and selecting the whole
loop body in the source code. They immediately noted the complete
loop hierarchy in the hierarchy view. P2 also verified by asking to click
on loop 3.1 and observing the same line highlighted in the source code.

P3 looked at the selected disassembly directly and found the index
variable ‘z’ annotated, matching the loop source code. When asked for
the loop name in the loop hierarchy, they asked to click on the top level
loop loop3. Observing that both source code and loop hierarchy have
five levels of nested loops, P3 guessed the correct loop.

E2: Identify/Assess vectorization in that loop. P1, P2, and P3 all
noted they did not recall exact vector instructions, but communicated
they would look for them. P0 required some background knowledge
on vectorization and the facilitator instructed that the presence of one
of the vector registers would indicate vectorization. P1 and P2 were
suggested names of vector registers.

Fig. 1. This screenshot captures the selected disassembly in the High-
lighted Items View. Evaluation participant P3 recognized the high-
lighted phidat variable to verify their position. They then discovered
the vfmadd231pd instructions indicative of vectorization.

P0, P1, and P2 all started by asking to click on loop 3.1 in the
hierarchy. P0 asked to scroll through the instructions in the selected
items view. They found an instruction using a vector register and then
turned back to the disassembly view to click on that instruction. They
concluded the loop has vectorization after verifying the instruction
links backs to the starting line of source code.

P1 and P2 expressed interest in searching. The facilitator reminded
P1 that ctrl-f could be used. P2 remembered. Both asked to search
for vector registers in the selected items view, found corresponding
vector instructions (vfmadd231pd) from the search, and concluded the
loop was vectorized.

P3 took a different strategy from the other participants. They asked
to click on the body of the innermost loop in the source code, saying
they planned to look for the arithmetic instructions and possible un-
rolling therein. Scanning through the selected items view (Fig. 1), they
remarked the renamed variable annotations are helpful for identifying
the data loading instructions. After some scrolling, they found four
fused multiply-add instructions (vfmadd231pd). They said, “That’s
amazing actually. It does look like its vectorized, but it’s doing multiple
of them back to back, so it’s highly unrolled, so it’s vectorized really
well.”

E3: Compare/Assess multiple variants in the source code. The
LTIMES application has several versions of the same computation. In
this task, we focused on two: a) a “base-sequential” (“Base”) version
with nested four loops, and b) a “RAJA-sequential” (“RAJA”) version
where loops are implemented using RAJA constructs and thus the
quadruple nesting is not explicitly written in the source file. Some
participants also chose to look at a third variant, “lambda-sequential”

Fig. 2. Loop hierarchy view. Evaluation participant P1 determines the
leaves are four variants of the same loop, generated by the compiler to
aid loop unrolling.

(“Lambda”) which is like Base, but uses a lambda function for the body.
This task was free-form by design and each participant approached it
with a different strategy.

P0 looked at the RAJA version in the source code, observing there
were only two lines not grayed out. They asked to click on the first line
and then looked at the disassembly in the selected items view. P0 then
turned their attention to the CFG view, examining the function names
in the nodes. Next they examined the loop hierarchy view and asked to
click on the top level. A new line was highlighted in the source code:
a lambda function. The function inlining tree refreshed with several
nodes as well, so P0 asked to collapse the view. P0 asked why the
original line and the lambda function were both highlighted. After a
reminder that loop hierarchy selection is by full loop, P0 investigated
the source code view for any other highlighted lines. They correctly
hypothesized that the highlighted disassembly was then showing the
loop body, but said they were not sure how to assess the differences
further due to lack of experience in this kind of analysis.

P1 asked to click on the top level function in the loop hierarchy,
which they surmised would contain all versions. They then asked to
collapse the function inlining tree since it contained a lot of items.
They asked to click on a specific loop in the loop hierarchy. They
recognized this loop was associated with the RAJA version, but wanted
to check the Lambda version first. They then asked to click on the
top-level loop in the Lambda version in the source code. P1 remarked
the top-level loops in both Base and Lambda looked similar. They
then directed the facilitator to navigate down the loop hierarchy, asking
to click on specific loops for further comparison. P1 said the second
level loops look similar and hypothesized the optimizations are only
in the inner two loops. At the first innermost loop among the four leaf
nodes (Fig. 2), P1 hypothesized that the inner loops in both versions
are vectorized and that the leaf loops are “fixing up the ends for the
vectorization unroll.” They repeat the process with the Base version,
confirming their expectation.

P1 then asked to click on the source line with RAJA construct. They
noted this does not result in a loop in the loop hierarchy view. They
turned to the CFG view, needing to scroll. They mentioned the CFG
is not helpful because of lack of instructions in the basic blocks. P1
asked to click again on the RAJA construct in the source code to get
back to the previous state. They then explored the function inlining
view, recalling it had “kernel stuff” from previous exploration (Fig. 3,
full context: Fig. 4,). P1 asked to scroll through the inlining tree.
They recognized a function from their previous experience with RAJA
kernels and asked to click on it. They observed that the loop hierarchy
view has changed and decided to explore further. P1 asked to click on
loop2.1.1. The loop hierarchy view updated to show more nesting.
P1 identified the quadruple-nested loop that was the target of their
search. They remarked the code structure is similar to the base version,
but obfuscated by the long call stack. They further identified candidates
for loop preamble and postamble instructions in the CFG View (Fig. 5,
full context: (Fig. 6)).

Fig. 3. This screenshot is a zoomed in version of Evaluation participant
P1’s area of interest in the kernel code. The full interface is shown in
Fig. 4.

P2 said they wanted to further examine the base version first. They
asked to click on the top-level loop in this version and then to scroll
through the selected items view for an overview of instructions. They
also examined the CFG view, but expressed confusion at the discon-
nected nodes. They then moved to the call graph view and reasoned
the disconnected nodes in the CFG were due to a data setup line in the
source. P2 then asked to range-select the entire base version. They
examined the call graph view further but determined it was not helpful
and instead asked to browse the selected items view.

Next, P2 asked to click on the RAJA construct in the RAJA version.
Noticing no loops in the loop hierarchy, they then asked to click on the
for loop which repeats the loop kernel multiple times. They examined
the loop hierarchy, saw one loop (loop2), and noted there were only a
few disassembly lines selected. They remarked they could tell it was
making an indirect call from the selected disassembly. Examining the
source code further, P2 noted a lambda function was called in the RAJA
construct, hypothesizing it was the indirect call. They asked to find the
source code of that lambda function and click on it. They noted the
disassembly selected by this operation is what they sought. They asked
to scroll through the selected items view and remarked on vectorization
present in this version as well.

P2 then returned to the loop hierarchy view and asked to click on
the top level loop (loop2). Noticing more loops showing up in the
hierarchy, they asked to click on levels beneath it. They directed the
facilitator to perform clicks between the source and loop hierarchies to
repeat the actions for the base version for comparison. P2 then repeated

their strategy of going through the lambda function to return to the
RAJA view. P2 hypothesized that both versions have everything inlined,
but there is more overhead in the RAJA version for the indirect call.
They qualified their finding, noting their RAJA knowledge is not too
deep. (Their findings are consistent with performance data not used in
the evaluation.)

P3 started by asking to click on the top-level for loop in the Lambda
version. P3 expressed confusion that the loop hierarchy did not show
the inner loops. They did not recall the option to click the loop. P3
then asked to click on the source line with the innermost for loop. P3
observed the same loop unrolling structure they previously found in
the Base version. They wanted to click on the loop body but it had
no mappings to the disassembly. P3 then asked to scroll through the
selected items. Spotting the annotations in the disassembly for variable
phidat, P3 hypothesized they were looking at the data setup. P3 said
they were looking for the arithmetic instructions of the loop body. They
switched to the full disassembly view after noting that the disassembly
in the selected items view was not enough because the source line
only maps to the loop setup in disassembly. P3 then found some non-
highlighted arithmetic instructions and said “that’s completely what we
want to see.” P3 remarked “highlighted terms is really tempting but
sometimes you just really have to look.” From these instructions, P3
concluded that this variant was vectorized like the Base.

P3 then asked to click on the RAJA construct in the source view,
which highlighted few instructions in the disassembly. After a pause,
the facilitator suggested exploring the loop hierarchy. However, P3
continued with the source code view and asked to click on the enclosing
for loop. This updated the loop hierarchy to show loop2. P3 expressed
wanting to drill down the hierarchy but did not recall the option to click
on the loop. P3 instead asked to click on the RAJA construct again
and started exploring the CFG, suggesting it might contain the loop
body. In this case, the k-hop filter did not show a loop. They asked to
click on some of the nodes, but did not find the loops. P3 remarked the
CFG was too low-level without the loop information and there was not
enough context. They then asked to click on the same line of source
code to go back to the previous state. They examined the text inside the
highlighted basic blocks in CFG. P3 hypothesized the current selections
to be part of a branch and following the path downward would find the
start of the loop. Their remarks seemed to indicate confusion about
what the CFG was showing.

3 EARLY PROTOTYPE FIGURES

We include images of other early prototypes. Specifically, we include a
second pre-CFG prototype (Fig. 7), the complete version of the match-
ing prototype from the paper text (Fig. 8), and an example of a prototype
with full instructions in the CFG nodes, similar to CFGExplorer (Fig. 9)
with its subsequent change to smaller nodes (Fig. 10). Fig. 9 shows
the CFG nodes can be very large in terms of number of instructions,
distorting the graph topology.

4 ACKNOWLEDGEMENTS

This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. LLNL-CONF-812737.

Fig. 4. This screenshot shows a window into the Function Inlining Tree as directed by Evaluation participant P1. In this view, they had asked to stack
the Source Code View so they could focus more on the other views. They recognized this particularly deep inlining chain as an indicator of kernel
code and looked for recognizable functions. This is also an example of a disconnected CFG.

Fig. 5. Drilling down into the loop hierarchy reveals nested loops in the CFG subgraph.

Fig. 6. This is a screenshot from the evaluation with Evaluation participant P1. After using the Function Inlining Tree, they used the Loop Hierarchy
View and retrieved the nested loops shown in the CFG View. A cropped version of this figure is shown in the paper.

Fig. 7. This early prototype did not have a CFG View. Instead it uses color outlining to show a correspondence between source code and inlining
derived from the disassembly.

Fig. 8. This is the full screenshot of the source code to disassembly matching prototype shown in the paper.

Fig. 9. This prototype combines source code, an inlining tree showing inlined instructions, and a CFG View. The inlining tree shows all instructions
associated with inlining. The CFG View shows all instructions in the nodes. The instructions obfuscate the structure in each view, so we removed
them to focus the inlining tree and CFG on structure and navigation with a separate flat view of the diassembly.

Fig. 10. This prototype iteration uses only the basic block IDs in the CFG nodes compared to the full instructions in Fig. 9. This change emphasized
the topology and structure of the CFG, where multiple loops are now visible. Loop shading cues have not yet been added. Ultimately, we decided
basic block ID was too abstract. The final version includes containing-function name.

	Full Hierarchical Task Analysis
	Basic Evaluation Tasks Completed by P0 and P1
	Extended Evaluation Task Descriptions

	Early Prototype Figures
	Acknowledgements

