CcNav: Understanding Compiler Optimizations in Binary Code
Supplemental Materials

Sabin Devkota, Pascal Aschwanden, Adam Kunen, Matthew Legendre, and Katherine E. Isaacs

1 FuLL HIERARCHICAL TASK ANALYSIS

We include the full task hierarchy derived from our task analysis. Yet
undefined terms are described below.

Goal: Understand performance / Identify optimizations

T1 Understand/Identify compiled structure

T1.1 Match source code with binary code
T1.2 Identify/Relate structures with code
T1.2.1 Identify loops
T1.2.2 Identify functions
T1.3 Annotate relations
T1.3.1 Annotate registers with variables
T1.3.2 Annotate loops & loop internal structure
T1.4 Trace variable
T2 Understand optimizations
T2.1 Find areas of interest
T2.1.1 Overview of binary code
T2.1.2 Winnow code
T2.1.2.1 Winnow to specific loop
T2.1.2.2 Winnow to function
T2.1.2.3 Winnow to line of code
T2.1.2.4 Winnow based on performance metric
T2.1.3 Identify anomalous code
T2.2 Identify optimizations
T2.2.1 Identify inlining
T2.2.2 Identify vectorization
T2.2.3 Identify code hoisting
T2.2.4 Identify loop unrolling
T2.3 Assess optimizations
T2.3.1 Assess amount of optimization present
T2.3.2 Relate to performance metrics
T2.4 Compare generated code
T2.4.1 Compare code with different optimizations
T2.4.2 Compare code with different source
T2.4.3 Compare code with different compilers
T2.5 Annotate optimizations

Loop internal structure refers to instructions related to the loop
body (what performs the computation) and the preamble and postamble
(which manage the iteration).

Code hoisting is another optimization which moves a computation

out of its enclosing loop when the computation is unnecessary to repeat.

 Sabin Devkota and Katherine E. Isaacs are with University of Arizona.
E-mail: {devkotasabin@email.arizona.edu | kisaacs@cs.arizona.edu} .

* Pascal Aschwanden, Adam Kunen, and Matthew Legendre are with LLNL.
E-mail: {aschwandenl | kunenl | legendrel } @lInl.gov.

We did not have a real example of expected code hoisting, so we did
not prioritize this optimization.

Anomalous code is ill-defined. Presently it is described as “I’ll know
it when I see it.”

Performance metrics can be real or simulated measures of actual
performance. We expect this will require extending our automated
analysis. It is not addressed by this paper.

2 BAsIC EVALUATION TASKS COMPLETED BY PO AND P1

Our evaluation sessions with participants PO and P1 included several
basic evaluation tasks. We decided to not repeat those in the sessions
with P2 and P3 because (1) PO and P1 had completed them easily and
(2) we wanted to afford more time to the tasks that were closer to a real
analysis session. We list the basic tasks completed by PO and P1 here:

* Find a specific line in the source code.
¢ Given the line of source code, find the function that contains it.
¢ Given a function, what functions are inlined inside of it?

* Given a loop, what function calls are made in it?

2.1 Extended Evaluation Task Descriptions

We provide our detailed observations regarding the pair analytics ac-
tions of our participants below.

E1: Identify the assembly of a loop containing a selected line of
source code. Because a loop spans multiple lines and the mapping
between source code and disassembly is imperfect, this task has an im-
plication beyond straightforward highlighting. All participants started
by asking to click on the first line of the loop, highlighting the corre-
sponding code, and continued their analysis without pause.

PO, P1, and P2 next examined the loop hierarchy view. PO noted the
source code line is the top of a quadrupally nested loop which was not
fully depicted in the loop hierarchy. The facilitator clarified that the
source code-to-disassembly mapping only maps the clicked line of the
loop and not the whole body. PO asked to click on the top level loop
shown in the loop hierarchy. This selected the whole loop body in the
source and showed the complete nesting in the hierarchy.

P1 guessed the correct loop by looking at the partial loop hierarchy,
reasoning, “Loop 3 must be the outer loop, so 3.1 must be the one we’re
on.” To verify, they asked to click on Loop 3.1 and noted the one-to-
one correspondence with the source code loops. P2, on the other hand,
asked to perform a range search by dragging and selecting the whole
loop body in the source code. They immediately noted the complete
loop hierarchy in the hierarchy view. P2 also verified by asking to click
on loop 3.1 and observing the same line highlighted in the source code.

P3 looked at the selected disassembly directly and found the index
variable ‘z’ annotated, matching the loop source code. When asked for
the loop name in the loop hierarchy, they asked to click on the top level
loop loop3. Observing that both source code and loop hierarchy have
five levels of nested loops, P3 guessed the correct loop.

E2: Identify/Assess vectorization in that loop. P1, P2, and P3 all
noted they did not recall exact vector instructions, but communicated
they would look for them. PO required some background knowledge
on vectorization and the facilitator instructed that the presence of one
of the vector registers would indicate vectorization. P1 and P2 were
suggested names of vector registers.

Highlightedliems x

0x4laead: movsd %xmm0, (%rcx)

Ox4laeb7: vmovsd %xmm0,0x0(%rbp,%rdi—m—m this,8),ixmm3
Ox4laebe: lea 0x0(%=i5 run_reps , irax,8),%rdx
0x4laec2: vxorpd %ymm2,%ymm2,tymm2

0x4laect: vmovdga %tymmoO,%ymmzZ, ¥ymml

Ox4laeca: vmovdga RymmO,%ymml, %ymm0

Ox4laece: mov OxcO(%rsp),%rbz phidat
0x4laed6: vmovaps %xmm0,%ixmm3,%xmm3 1, 0

0x4laeda: vmovupd %ymm0,(%rdx),%ymmd

Ux4laede: vmovupd %ymm0,0x20(%rdx), $ymmS

Ox4laee3: vmovupd %ymm0,0x40(%rdx),ymmé

Ix4laeed: vmovupd %tymm0,0x60(%trdx), tymm7

0x4laeed: vimadd23lpd %ymmd,0x0(S=bx phidutﬂ?rax.B),%ymmB
0x4laef3: vimadd231lpd %ymm5,0x20(%rcbx phidat,irax,8),%ymm2
Ox4laefa: vimadd231pd %ymmé,0x40(3=bx phidat ,6 irax,8),%:ymml

Ox4laf0l: vfmadd23lpd %ymm7,0x60 (%+=kbx phidat 6 trax,8),tymm0

Ox4laflB: vaddpd %ymm3,fymm2,%ymm2

Ox4lafle: vaddpd %ymml,Eymm0, tymm0

0x41af20: vaddpd Symm2, $ymm0, ¥ymml

0x4laf24: vextractfl28 %ymml,50x1,%ymm3

O0x4laf?a: vaddpd %xmml,%xmm3, ixmmd

0x4laf2e: vunpckhpd %xmmé, %xmm4, xmm5

0x41laf32: vaddsd %xmm4,%xmm5, txmmé

0x41af36: movsd %xmmé,0x0(%rbp, %rdi—m—m this,8) 1, 0

0x4lafSa: vmovsd %xmm0,0x0(%rbp,3=di=—m this,8),ixmml

0x4laf6l: lea Ox0(%rll,%rlQ,l),%=i2—9 g

Fig. 1. This screenshot captures the selected disassembly in the High-
lighted Items View. Evaluation participant P3 recognized the high-
lighted phidat variable to verify their position. They then discovered
the vimadd231pd instructions indicative of vectorization.

PO, P1, and P2 all started by asking to click on loop 3.1 in the
hierarchy. PO asked to scroll through the instructions in the selected
items view. They found an instruction using a vector register and then
turned back to the disassembly view to click on that instruction. They
concluded the loop has vectorization after verifying the instruction
links backs to the starting line of source code.

P1 and P2 expressed interest in searching. The facilitator reminded
P1 that ctrl-f could be used. P2 remembered. Both asked to search
for vector registers in the selected items view, found corresponding
vector instructions (vfmadd231pd) from the search, and concluded the
loop was vectorized.

P3 took a different strategy from the other participants. They asked
to click on the body of the innermost loop in the source code, saying
they planned to look for the arithmetic instructions and possible un-
rolling therein. Scanning through the selected items view (Fig. 1), they
remarked the renamed variable annotations are helpful for identifying
the data loading instructions. After some scrolling, they found four
fused multiply-add instructions (vimadd231pd). They said, “That’s
amazing actually. It does look like its vectorized, but it’s doing multiple
of them back to back, so it’s highly unrolled, so it’s vectorized really
well.”

E3: Compare/Assess multiple variants in the source code. The
LTIMES application has several versions of the same computation. In
this task, we focused on two: a) a “base-sequential” (“Base”) version
with nested four loops, and b) a “RAJA-sequential” (“RAJA”) version
where loops are implemented using RAJA constructs and thus the
quadruple nesting is not explicitly written in the source file. Some
participants also chose to look at a third variant, “lambda-sequential”

Loop Hierarchy

rajaperf::apps: :LTIMES::runSegVariant

[locp_3 |

loop 3.1
[100p_3.1.1 |
loep 3.1.1.1 |

loop 3.1.1.1.2

leop_3.1.1.1.1

" [loop 3.1.1.1.1.4

loop 3.1.1.1.1.3

loop_3.1.1.1.1.2

leop_3.1.1.1.1.1

Fig. 2. Loop hierarchy view. Evaluation participant P1 determines the
leaves are four variants of the same loop, generated by the compiler to
aid loop unrolling.

(“Lambda”) which is like Base, but uses a lambda function for the body.
This task was free-form by design and each participant approached it
with a different strategy.

PO looked at the RAJA version in the source code, observing there
were only two lines not grayed out. They asked to click on the first line
and then looked at the disassembly in the selected items view. PO then
turned their attention to the CFG view, examining the function names
in the nodes. Next they examined the loop hierarchy view and asked to
click on the top level. A new line was highlighted in the source code:
a lambda function. The function inlining tree refreshed with several
nodes as well, so PO asked to collapse the view. PO asked why the
original line and the lambda function were both highlighted. After a
reminder that loop hierarchy selection is by full loop, PO investigated
the source code view for any other highlighted lines. They correctly
hypothesized that the highlighted disassembly was then showing the
loop body, but said they were not sure how to assess the differences
further due to lack of experience in this kind of analysis.

P1 asked to click on the top level function in the loop hierarchy,
which they surmised would contain all versions. They then asked to
collapse the function inlining tree since it contained a lot of items.
They asked to click on a specific loop in the loop hierarchy. They
recognized this loop was associated with the RAJA version, but wanted
to check the Lambda version first. They then asked to click on the
top-level loop in the Lambda version in the source code. P1 remarked
the top-level loops in both Base and Lambda looked similar. They
then directed the facilitator to navigate down the loop hierarchy, asking
to click on specific loops for further comparison. P1 said the second
level loops look similar and hypothesized the optimizations are only
in the inner two loops. At the first innermost loop among the four leaf
nodes (Fig. 2), P1 hypothesized that the inner loops in both versions
are vectorized and that the leaf loops are “fixing up the ends for the
vectorization unroll.” They repeat the process with the Base version,
confirming their expectation.

P1 then asked to click on the source line with RAJA construct. They
noted this does not result in a loop in the loop hierarchy view. They
turned to the CFG view, needing to scroll. They mentioned the CFG
is not helpful because of lack of instructions in the basic blocks. P1
asked to click again on the RAJA construct in the source code to get
back to the previous state. They then explored the function inlining
view, recalling it had “kernel stuff”” from previous exploration (Fig. 3,
full context: Fig. 4,). P1 asked to scroll through the inlining tree.
They recognized a function from their previous experience with RAJA
kernels and asked to click on it. They observed that the loop hierarchy
view has changed and decided to explore further. P1 asked to click on
loop2.1.1. The loop hierarchy view updated to show more nesting.
P1 identified the quadruple-nested loop that was the target of their
search. They remarked the code structure is similar to the base version,
but obfuscated by the long call stack. They further identified candidates
for loop preamble and postamble instructions in the CFG View (Fig. 5,
full context: (Fig. 6)).

RAJA::internal::Bxecute_statemant_list<campk:list:RAJA::s:atement::?or(}l, RAJA
iid RAJA::internal::StatementListExecutor<01l, l#.. camp: :list<RAJA::statement::For
void RAJA::internal::StatementExecutoz(RLJB::stakement::?orc}l, RAJA::policy::l

| void RAJA::policy::loop::forall_impl<RAJA::TypedRangeSegment<long, long>, RA
void RAJA::internal::ForWrapper<3l, RAJA:: intern%l: :LoopData<camp::list<RE
RAJA: :internal::GenericWrapper<RAJA:: internal::LpopData<camp::list<RAJA

void RAJA::internal: :executeﬁstatgmgntiliatccam;% :list<RAJA::statemer

'void RAJA::internal::StatementListExecutor<0l, lh, camp::list<RAJA

void RAJA::internal::StatementExecutor<RAJA: :sta#ement; :For<01,

I void RAJA::policy::loop::forall impl<RAJA: :Typed.#angeSeqment-:
void RAJA::internal::ForWrapper<0l, RAJA::intern#L::LoopDa
| RAJA::internal::GenericWrapper<RAJA::internal: :L*:opDatac

void RAJA::internal::execute_statement_list<campg:lis
void RAJA::internal::StatementListExecutor<0l, l#,
| void RAJA::internal::StatementExecutor<RAJA::sta

void RAJA::internal::invoke lambda<01l, RAJA::i
[zuz22+

rajaperf::apps::LTIMES: : runSeqVariant (ra;

| RAJA: :TypedViewBase<double, double*, R

| double& RAJA::View<double, RAJA::de

long RAJA::detail::LayoutBase img

long VarOps::sum<long, leng, 1
VarOps:: foldl_impl<RAJA: : ope

I RAJA::operators::plus<lon

IRAJA::operatcrs::plus(lon

k RAJA: : TypedViewBase<double, double*, R
double& RAJA::View<double, RAJA::de

long RAJA::detail::LayoutBase_imp

long VarOps::sum<long, long, 1l

Fig. 3. This screenshot is a zoomed in version of Evaluation participant
P1’s area of interest in the kernel code. The full interface is shown in
Fig. 4.

P2 said they wanted to further examine the base version first. They
asked to click on the top-level loop in this version and then to scroll
through the selected items view for an overview of instructions. They
also examined the CFG view, but expressed confusion at the discon-
nected nodes. They then moved to the call graph view and reasoned
the disconnected nodes in the CFG were due to a data setup line in the
source. P2 then asked to range-select the entire base version. They
examined the call graph view further but determined it was not helpful
and instead asked to browse the selected items view.

Next, P2 asked to click on the RAJA construct in the RAJA version.
Noticing no loops in the loop hierarchy, they then asked to click on the
for loop which repeats the loop kernel multiple times. They examined
the loop hierarchy, saw one loop (Loop2), and noted there were only a
few disassembly lines selected. They remarked they could tell it was
making an indirect call from the selected disassembly. Examining the
source code further, P2 noted a lambda function was called in the RAJA
construct, hypothesizing it was the indirect call. They asked to find the
source code of that lambda function and click on it. They noted the
disassembly selected by this operation is what they sought. They asked
to scroll through the selected items view and remarked on vectorization
present in this version as well.

P2 then returned to the loop hierarchy view and asked to click on
the top level loop (loop2). Noticing more loops showing up in the
hierarchy, they asked to click on levels beneath it. They directed the
facilitator to perform clicks between the source and loop hierarchies to
repeat the actions for the base version for comparison. P2 then repeated

their strategy of going through the lambda function to return to the
RAJA view. P2 hypothesized that both versions have everything inlined,
but there is more overhead in the RAJA version for the indirect call.
They qualified their finding, noting their RAJA knowledge is not too
deep. (Their findings are consistent with performance data not used in
the evaluation.)

P3 started by asking to click on the top-level for loop in the Lambda
version. P3 expressed confusion that the loop hierarchy did not show
the inner loops. They did not recall the option to click the loop. P3
then asked to click on the source line with the innermost for loop. P3
observed the same loop unrolling structure they previously found in
the Base version. They wanted to click on the loop body but it had
no mappings to the disassembly. P3 then asked to scroll through the
selected items. Spotting the annotations in the disassembly for variable
phidat, P3 hypothesized they were looking at the data setup. P3 said
they were looking for the arithmetic instructions of the loop body. They
switched to the full disassembly view after noting that the disassembly
in the selected items view was not enough because the source line
only maps to the loop setup in disassembly. P3 then found some non-
highlighted arithmetic instructions and said “that’s completely what we
want to see.” P3 remarked “highlighted terms is really tempting but
sometimes you just really have to look.” From these instructions, P3
concluded that this variant was vectorized like the Base.

P3 then asked to click on the RAJA construct in the source view,
which highlighted few instructions in the disassembly. After a pause,
the facilitator suggested exploring the loop hierarchy. However, P3
continued with the source code view and asked to click on the enclosing
for loop. This updated the loop hierarchy to show loop2. P3 expressed
wanting to drill down the hierarchy but did not recall the option to click
on the loop. P3 instead asked to click on the RAJA construct again
and started exploring the CFG, suggesting it might contain the loop
body. In this case, the k-hop filter did not show a loop. They asked to
click on some of the nodes, but did not find the loops. P3 remarked the
CFG was too low-level without the loop information and there was not
enough context. They then asked to click on the same line of source
code to go back to the previous state. They examined the text inside the
highlighted basic blocks in CFG. P3 hypothesized the current selections
to be part of a branch and following the path downward would find the
start of the loop. Their remarks seemed to indicate confusion about
what the CFG was showing.

3 EARLY PROTOTYPE FIGURES

We include images of other early prototypes. Specifically, we include a
second pre-CFG prototype (Fig. 7), the complete version of the match-
ing prototype from the paper text (Fig. 8), and an example of a prototype
with full instructions in the CFG nodes, similar to CFGExplorer (Fig. 9)
with its subsequent change to smaller nodes (Fig. 10). Fig. 9 shows
the CFG nodes can be very large in terms of number of instructions,
distorting the graph topology.

4 ACKNOWLEDGEMENTS

This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. LLNL-CONF-812737.

Hahighedoms x

Selected Source Code:

st TTIES_B0DY_RAIA;

Selected Assembly:

Oxdladad: mov Srbx-phidet PHIdAE,sre

0x41a4b0: lea Oxffffffff(+rbx—phidat Phidatl), irax
oxtiathas she soxi0x0

oxt1ath7: mov trox, vess- SEEEE BRSERY

Oxtlatha: mov trax, 108 (3xsp)

oxtiatezs mov 1e8,oxsso(szep)

Oxdladca: mov Sei4—MmCM RURLN, 0x448(trsp)
0Oxdladd2: mov srei BB ¥Ed B E ¥id,erls mumie mEE
0x41a4dS: mov +ebu—phidat PRIGAE, 0x450 (srsp)
Oxt1atdds mov vrd, e SHERE BREERE

oxtiateds mov sese G-I W, veep)

Oxdlated: mov srei - EHIS B H EhiE w2 5SS G
Oxdlate?s mov 0x270(Vrep), Aris—URSHORH [EGRLEGPE 1, O
Oxlatef: mov SOx1,0xb8 (brsp)

Oxdladta: call 0x3e656(txip) 1, 0
Oxdlades: mov brax,0xas(irap)

0x41507: test trax,trax

0xilasoa: iz Dabb(iris) 1. 0

VarRenamer x

Variable renamer:

Function: rajaperf: :apps::LTIMES: :runseqVariant

variat
Name,

Location: rd seares [0 Eods
Add Locaton

Name: vid

Location: seares [0 End:

stares 0 End:
Location: wrbx stares 0 End:
Add Locaton

Nane: psidat

Location: %13 stare: 0 End:
2dd Location

Name: num.m

Location: % seare: 0 End:
Add Losstion

Location: 0boCtrsp) Start: 413260 End:
Add Locaton
Namo: ol

Location: 0xe8Cirsp) stare: 19360 End:
Add Losation

s

s

e

e

s

e

amze0

an200

Filoops x | SourceCode

Disassembly x

Oxdladad: mov sebxphidet phidat,re

0x41a¢b0: lea OxfEEEFEEf(vrb-phidat PHIMAE),irax

CallGragh x

l RAJA: rutilsscallProL

Oxiladbi: shr 0x1,4z8

0x41atb7+ mov trox,beid-peidat peidat

Tent s Fok<ll, > exec, + RATA: ol
<11, RAJA::poLicy: :Loop: :loop_exec, RAJA:istatement: iFor<2l, N |oxalatbas mov vrax,0x108(trep)
i s tpor<ll, icy: 11oops : Loop_exac, RATA
Sy st . [ext10602: mov sra, omtssvren)
} 1oop_exec, Oxdladca: mov seiimemcs R, 0448 (trap)
“all_impl<Raa: stypech) long>, L —————
—r = : e | [PX413402: m0v Sxoi s 5 wid s vid seiemwmn oy
(e, e e 1

1, BAJA:tpoli
“execute_statenent , +100p:

0xd1a4dS : mov ssbx_phidst phidat.0xé50(tzsp)

0xdlatdd: mov Srdx,ebx—phidet phidat

S1::StatementListExecutor<0l, 1}, camp::list<RATA: | BT spols

Ariatatenant s 11oop_exce, || | Oxdlade0: mov srii§-5-9 G, (vrep)
¥ - 1 1ong>, - 4+ sov non ehis, [l
Ttermal <21, :
ntor: : internal: b 1por | |Oxt1ater: mov 0x270(trsp) +ris—Sunreps EunLveps 1, 0
RAJA: sinternal: sexocute statement list<camph:1ist<RAJA: statement: sFor<3l, RAJA | [griiio oo
ia L 1h, camp:: iFor
) Sopasn | |oxtlattar call oxses 1o

¥

Oxd1a4tt: mov vrax,0xas(vrep)

0x41a507: test trax,irax

0x41a50a: 3z Oxbb(8rip) 1, O

0x412510+ mov 0x8 (brax), brax

1_imp1enasa: 0x41a514+ mov 0x40 (1rax), bedi—i-m-hie-n-n Ehis
A7a: :3ypedhans
+ BATM s intarakly 0x41518+ mov 0x48 (1xax), rax
e } Oxilasic: mov o Ehis , 0x88 (vrap)
d L3k, [oxi1as247 mov

ke_lambda<0l, RAJA::1

Oxilasze: test trax,trax

oxd1as2¢+ 32 027 (brip) 1, 0

0x41a531 cmp $0x0,0x275a6¢ (rip)

0x41a539+ 3z Oxla(¥rip) 1, 0

0x1as3b: add $0x8, brax

0x1as3¢: mov $0x1,4r8d

0x412545+ add tr8d, (¥rax)

N 04105491 mov 0x38 (1zep) ,rdi - Shbe-a-n this
oxi1a5511 jmp 0x5(veip) 1, 0
ine
= reunclong, long, 1 | 041553 fnc 0xa(srax) 1, 0
Vazops: +foldl_i Gxi1556 mov - his) , irax
AT
T Goublr, 3 | 0x412559: mov 0xbs (srep),tesi
doublos RAJA: (Viev<double, RATAI1de' | oxd1a560: call 0x10(vrax) 1,
Tong RATA detal ine
= sy [x4105631 sov 0x30(1rap), veis-muncrene Funsens
oxttaseb: tost rops run rops bei5 sunseps run reps
Gxilasser 3z 0x33 (sip) 1, 0
0x1125707 cmp 50%0,0
T make_contek <ann oxe
ke +List<RAIM = -ox¢ [oxitas7ar 32 oma(seip) L, 0
ugincontext)
Liipiugt oxt1a57a1 mov xsa
) const 01135501 lea 0xd (sci5—uncreps un_seps), irax
i) conse
i 5 consta) | 0413584+ xadd +rad, (srax)
shazed ptr<h [0x41a589: jup Oxe(vrip) 1, 0

[P ugiastratasy, (gne oxx::_tock_policy)2>:+_shared_pbx (st
Plugts Lomo_cxss+_Lock_potiey)>rr__shared izt

red_pts

oF6 x
Onavigation Mode
Selection Modo

=

Fig. 4. This screenshot shows a window into the Function Inlining Tree as directed by Evaluation participant P1. In this view, they had asked to stack
the Source Code View so they could focus more on the other views. They recognized this particularly deep inlining chain as an indicator of kernel
code and looked for recognizable functions. This is also an example of a disconnected CFG.

~ Loop Hierarchy

0x4128d5: lea 0x0(, +=ii—mum=s numm,8), trdx

0x41a8dd: add trax,trex

[Zadupert sappa+:1aTHES :runseqvariant

1 Gx4Lage0: mov srie 35§ §,0rax

loop_2
[toop 2.2 I] 0x4lage3: mov 0x400(brsp),seis—sunseps [run reps
[toop_2.2.1 1 Oxdladeb: shl/sal §0xd,%rax
[1o0p_2.2.1.1 |

[100p_2.2.1.1.1

| | |oxarsset: mov erax,oxa20(ersp)

0x41a8£7: mov Ux£B(%rsp),brax

0x4la8ff: imul ¥r8,trax

0x412903: imul sxsi s 5 Wid == vid,srdx

0x41a907: vmovsd %xmm0,0x0(%rdi—m—m—this—m—m [this|, sxcx,8), wxmm0

0x41a90d: mov 0x100(rsp),3=is—sen_=eps run_reps

0x412915: imul $r9,%ri5—zunreps run reps

0x412319: add 0x408(%rsp),srax

0x412921: add $siS—EGR_EEpS| [Ein ¥eps,trax

0x41a9241 mov ¥rl0,+ri5—Tun—reps run_ceps

0x412927: add 0x410(%rsp),srdx

0x41a92f: shl/sal $0x4,%ri5—Tan—seps run reps

Fig. 5. Drilling down into the loop hierarchy reveals nested loops in the CFG subgraph.

Iy— |

Hahigriodtiems x Floops x | SourceCode

Selected Source Code:

350 LTIMES_BODY_RAJA;

Selected Assembly:

+ Jle ox2ar(arip) 1, 0
mov trdx,0x110(4rsp)
Lea 0x0(,4rdx,8), rax

mov trax,0x£8(vzep) 1, 0

+ mov 0x340(vrsp) drei B - id
Oxd1ases: mov S0x1,teax
Oxdla86a: mov 0x348(irsp), 3riz - HH &

72: xor tebx, tebx

mov 0x398(vrep) , 4x8

mov 0x390(trsp) 419

mov 0x3a0(vxep) 3210
+ mov 0x2e0(trsp), bxil

mov 0x2e8 (trsp),S=ilpaidet paidat
Ox4lagsc: mov 0x2£0(%ren).Sedi W Shis Em EhiE
VarRenamor x

Variable renamer:

Pusction: rajapert::apps: LTIMES: :runSeqVariant

Disassambly x

0x41a82a+ mov trox, beid—Rumn NURH

0x41282d: tost +rbxphidet DHIARE, +sox phidet phidat

CalGragh x views

04 126:

le 0x2d7(srip) 1, 0

11::basic_string<char, std::char_traits<char>, std: iallocator<char>

0x412836+ mov trdx, 0x110(irsp)

0x41a83e: lea 0x0(,brdx,8), brax

0x41a846+ mov trax,0x£8(veap) 1, 0

Oxdlasde: cap §0x0,0x450(3rsp)

: Sle 0x27a(trip) 1, 0

0x4185d: mov 0x340(vrsp) Sreis-a-vid-s—s wid

0x41a865: mov $0x1,beax

0xd 1862+ mov 0x34

zap) arid-g-9-9 4

0x412872: xor Sebx, tebx

0x412874+ mov 0x398 (¥rsp), ¥x8

0x41a87c: mov 0x390(¥rsp), ¥r9

0x412884+ mov 0x3a0(vrsp) , +rl0

Oxila8c: mov 0x2e0(Vrsp), 4rll

0x41a894: mov Ox2e8 (trsp), +ris-peidet psidat

0x41a83c: mov 0x2£0(irsp) rdiim-his—a—n Ehis

Ox1asad: cap $0x0,0x458(irsp)

Oxdlasad: 32 0x133(txip) 1, 0

0x41a8b3: mov Ox418(vrap), brox

0x41a8bb: mov sri4—emcA [URLE , vrax

Oxilagos: imul 8ril,srex

Oxilasca: inul seis-peidet peidat, trdx

Oxilatce: inul drdii-m-iis—m-n Ehi, trax

vold RATI |oxdlasd2: add vrdx,srex

0x4128d5: lea Ox0(,Seii—numcm numm,8), trdx

0xdla8dd: add trax,rox

1 . Gxtlate0: nov +riigg4 g, trex

1 0xdlased: mov 0x400(Vrsp) ,+wis—Sunceeps [Eun reps

1 Oxdlasebs shi/sal $0xd,brax

] | [exerases: sov sxax,oxszocarse)

seare: [0 Eoas - Loop Hierarchy
[Fagapert+ appa: i
[x
sare: fo Ena e
Tioop.2.2.1
[oop_2.2.1.1
starts [0 Ends ft [loop_2.2.1.1.1
seaze: fo Ena
seaxe: [0 B e
start: o Bna:
Location: (o0t start: (1m0 Eod: (4200
Ad Location
—
Location: 0x60isp) stare: 960 Ena: (40200
Add Location

=ov 0x£8(3rsp) , trax

05412303+ inul Srois—a-wid—s-s vid,brdx

0x41a907 + vmoved & o

02412304 mov Cx100(Vesp), oeisunceepe un_seps

0x412915: inul 1r9,%ei5-sunceeps Tun reps

0x412919: add 0x408 (4rsp), brax

0x41a521+ add =15 senceeps Eun_Eeps ,rax

0x41a924+ mov 1r10,4ei5—EWNSESDS FUR_FODE

0x412927: add Ox410(4rsp), Srdx

0x41292¢: shi/sal SOxd ,xis—suncseps Fun ¥eps

0x412933: mov =is-Sen—seps Fun.reps,0xé40(trsp)

CFG x
Onavigation Mode
Selaction Mod

Fig. 6. This is a screenshot from the evaluation with Evaluation participant P1. After using the Function Inlining Tree, they used the Loop Hierarchy
View and retrieved the nested loops shown in the CFG View. A cropped version of this figure is shown in the paper.

#include <stdio.h>

int buffer[1024][1024];

static int multl(int x, int y)

{

return (x+1)+(y+1);

static int mult2(int x, int y)

{

return (x+1)*(y+1);

static int mult3(int x, int y)

{

return (x-1)*(y-1);

static int dosum(int a, int b)

{
int result = multl(a, b);
result += mult2(a, b);
result += mult3(a, b);

return result;

multl

void *doloop(int i)

{

int x, y

for (y = 0; y < 1024; y++) {
for (x = 0; x < 1024; x++) {

buffer[y][x] = dosum(x*i, y*i);

Fig. 7. This early prototype did not have a CFG View.
derived from the disassembly.

Instead it uses color outlining to show a correspondence between source code and inlining

1 #include <stdio.h>
2

3 int butfer(10241(10241;

.

5 static int malti(ine x, int y)
61

7 return (xl)e(reb)

o)

5

10 static int mile2(int x, int y)
1

12 return (x1)4(ye1);

1)

1

15 static int miled(int x, int y)

16 (

704 mov tedi,OxeEEreeerereeereo (srsp)
708: movd OXESEFEEELEEELEreo (vrsp), banaT

714: mov 50x1, vesi.

715 pompeqd Sxmmd, bxmm0

724+ movdqa 0xL43(vrip) , txamd

733 mov 0x200d14 (brip) brax

740+ movdqa 0x143 (+rip) tan2

743 pshutd txem, $0x0, Sxmm?

754 novdqa 0xL1(vrip), txami

763 moviga Sxem, bxmml

768+ lea 0x1000(3xax) trex

775+ lea 0x401000 (+rax), x

782: psrlq $0x20, bxmml 1, O

788 mov fesi,OxLEELLELLLLLLLLes (srsp)

|

752 movd OXEEELEEELEELEEEes (vrsp), bxmmd

1)
1

20 static int dosum(int a, int b)
21 ¢

22 int result = mlti(a, b);
23 result += nult2(a, b);

20 result += mult3(a, b)

25 return result;

26 void *doloop(int i)
29 ¢

0 datx oy

3 for (y = 05y < 10245 y+o) {

2 for (x = 05 x < 10245 x4) (
3 butter(y)(x] = dosun(x*i, y*i):
3)

EERY

36 return (voidt) butfer;

B

Fig. 8. This is the full screenshot of the source code to disassembly matching prototype shown in the paper.

#include <climits>
#include <vector>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <time.h>
#include <sys/time.h>
#include <iostream>

#include <unistd.h>

#if _OPENMP
include <omp.h>

#endif
#include "lulesh.h"
/* Work Routines */

static inline
void TimeIncrement(Domain& domain)
{

Real_t targetdt = domain.stoptime() - domain.time|

if ((domain.dtfixed() <= Real_t(0.0)) && (domain.c
Real_t ratio ;

Real_t olddt = domain.deltatime() ;

/* This will require a reduction in parallel *,

Real_t gnewdt = Real_t(1.0e+20) ;

798 loa OxEfEEEEfffffffita(srai),todn

801+ movdqa txmmd, txmn2

806+ mov Sedx, OXEEELEEEEEELEELE (vxap)
810: lea Oxe£LEEO00(Szex) ,Srdx

817: pshutd Sxmmd, $0x0, Sxm3

8221 movd OXELEEELELLEELLELO (esp) , bunmd
828+ novdqa bxmm3, txmns

851: nop 0x0(srax,srax,1) 1, 0

8561 movga Sxm2, xmnl
8601 movga Sxmm7, Hxnn0
8541 add $0x10, 3rdx

868: parlg $0x20, bxmmt

73: pruludg Sxmn2, bamm0

910: paddd vxmm0, bxmm0

915: paddd txem2, bxmms

920: novdqa Sxmms, Sxmns
925+ pnuludg Sxems, bxnml
9301 paddd Sxmm3, Sxems

935+ parlq $0x20, xmms

901: pruludg Sxmé, temmg
946: pahutd txmml, $0%8, xmml
951: pahutd txmmé, $0x8, xmmé
957: punpeklgd txmmé, xmml
962: paddd ¥xmms, St

967+ novdaa vxmm0, txmms,

doLoop

0x2c0: mov %edi,OxfffffffFfFffFFFff0(%rsp)
0x2c4: movd OxffffffffFfFFFFFO(%rsp), $xmm7
0x2ca: mov $0x1,%esi

dosum
I multl |
[714: mov so0x1,s%esi |
I 719: pcmpeqd $xmm0, $xmm0 I
| mult3 [

719: pcmpegd %xmm0, $xXmm0

724: movdga 0x143(%rip),¥xmm3
733: mov 0x200d14(%rip),%rax
740: movdga 0x143(%rip), $xmm2
749: pshufd $xmm7,$0x0,%xmm7
754: movdga 0x115(%rip), $xmmd

763: movdga $xmm7,$xmml

768: lea 0x1000(%rax),%rcx

775: lea 0x401000(%rax),%r8

782: psrlg $0x20,%xmml 1, O

788: mov %esi,OXfEffffffFEFFFEFa (Srsp)
792: movd OxfffffffffffFffff4(%rsp), $xmmé
798: lea Oxfffffffffffffffe(%rsi),%edx
801: movdga %xmm4, $xmm2

multl

806: mov %edx,OXfEffffffFEFFFEF0(Srsp)

810: lea Oxfffff000(%rcx),%rdx
817: pshufd %xmm4,$0x0, $xmm3
822: movd OxfffffffffffFFfFFO(%rsp), sxmmé
828: movdga %xmm3, $xmmé

832: pshufd %xmm4,$0x0,$xmmé
837: psrlg $0x20, $xmmé

842: movdga %xmm4,$xmm5

Fig. 9. This prototype combines source code, an inlining tree showing inlined instructions, and a CFG View. The inlining tree shows all instructions
associated with inlining. The CFG View shows all instructions in the nodes. The instructions obfuscate the structure in each view, so we removed
them to focus the inlining tree and CFG on structure and navigation with a separate flat view of the diassembly.

* |root |
This is a Version 2.0 MPI + OpenMP implementation ¢ Lca]_cHourglassControlFQrElems |
0: push R15, RSP
Copyright (c) 2010-2013. 2+ push R14, RSP
Lawrence Livermore National Security, LLC. 4: push R13, RSP
Produced at the Lawrence Livermore National Laborato: 6: push R12, RSP
LLNL-CODE-461231 8: push RBP, RSP
9: push RBX, RSP
All rights reserved. 10: sub RSP, 678
: .
17: EAX RDI + 57
This file is part of LULESH, Version 2.0. mov s 25
23: mov [RSP + 290], RDI
Please also read this link -- http://www.opensource.c 31: mov [RSP + 218], RSI
g .
39: movsd [RSP + 2a0 XMMO
/1111111111117 ! o
48: lea EBX, 0 + RAX * 8
DIFFERENCES BETWEEN THIS VERSION (2.x) AND EARLIER VI 55: mov R14D, EAX
: ’
* Addition of regions to make work more representatis 58: mov [RSP + 260], EAX
* Default size of each domain is 3073 (27000 elem) it 65: movsxd RBX, EBX
: shl 1 RBX
more representative of our actual working set sizes SO:RshT/sa 3
72: mov RDI, RBX
* Single source distribution supports pure serial, pt 75: call 0 + RIP + 5
and MPI+OpenMP 80: mov RDI, RBX
* Addition of ability to visualize the mesh using Vit 83: mov [RSP + 220], RAX
s P 91: call 0 + RIP + 5
https://wci.llnl.gov/codes/visit/download.html
96: mov RDI, RBX
* Various command line options (see ./lulesh2.0 -h) 99: mov [RSP + 228], RAX
g .
-q : quiet mode - suppress stdout 107: call 0 + RIP + 5
-i <iterations> : number of cycles to run 112: mov RDI, RBX
115: RSP + 2 RAX
-s <size> : length of cube mesh along side SR TOVAIRS) 301,
123: call 0 + RIP + 5
-r <numregions> : Number of distinct regions (def: ! 128: mov RDI, RBX
: ’
-b <balance> : Load balance between regions of a 131: mov [RSP + 238], RAX

Fig. 10. This prototype iteration uses only the basic block IDs in the CFG nodes compared to the full instructions in Fig. 9. This change emphasized
the topology and structure of the CFG, where multiple loops are now visible. Loop shading cues have not yet been added. Ultimately, we decided
basic block ID was too abstract. The final version includes containing-function name.

	Full Hierarchical Task Analysis
	Basic Evaluation Tasks Completed by P0 and P1
	Extended Evaluation Task Descriptions

	Early Prototype Figures
	Acknowledgements

