ResBaz Data Visualization Workshop

Agenda:

- Data Vis basics \& terminology
- Web Charting with Vega-Lite
- Free experimentation time

Template/Data for Code-Along:

- https://bit.ly/ResBazVisWorkshop

Pre-Survey (Google Form):

- https://tinyurl.com/VisWorkshopPreSurvey

How we're using Zoom

- Declare you're finished with activities with "yes" notice in participant list.
x
- When you have a question or answer, either:
- Write it in the chat
- Use the "raise hand" feature
- Direct chat helper Alex Bigelow

- Add to HackMD file
yes
x

Some Data Terminology

Data Tables

A	B	C	5	T	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box		7/17/07
32	7/16/07	2-High	Medium Box	tribute	7/18/07
32	7/16/07	2-High	Medium Box	0.05	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	-1809	5-Low	Wrap Baq	0.56	1/20/05
69	item 5	4-Not Specified	Small Pack	0.44	6/6/05
69	item 5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3 -Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3 -Medium	Medium Box	0.6	6/12/06
132	6/11/06	3 -Medium	Jumbo Box	0.69	6/14/06

Each data point is an item (or records), usually represented as a row.

Columns contain values of a particular attribute (or field).

The value of an attribute for a particular item is a cell (or attribute value).

Types of Attributes

Quantitative data has order and allows mathematical operations
Ordinal data has order but not mathematical relationships
Nominal (a.k.a. Categorical) data has neither order nor mathematical relationships

\rightarrow Nominal

Examples

\rightarrow Quantitative

- Lengths
- Counts
- Pressure
- Temperature
- Weights
- Distances
- Dates
- Coordinates
\rightarrow Ordinal

- S, M, L sizes
- Letter grades
- Rankings
- Likert scales (e.g., rate from very satisfied to very dissatisfied)
\rightarrow Nominal

- Shapes
- Colors
- Names
- Blood types
- Countries
- Event types

What operations can you do?

Quantitative, Ordinal, or Nominal?

A	B	C	S	T	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box		7/17/07
32	7/16/07	2-High	Medium Box	attribute	7/18/07
32	7/16/07	2-High	Medium Box	0.05	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Uraent	Small Pack	0.49	3/19/07
66	-100\% 5	5-Low	Wrap Baq	0.56	1/20/05
69	item 5	4-Not Specified	Small Pack	0.44	6/6/05
69	item 5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06	5-Low	Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06

Quantitative, Ordinal, or Nominal?

A	B	C	S	T	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Smalll ${ }^{\text {Oat }}$	0.79	7/17/07
32	7/16/07		Jur temp	12	7/17/07
32	7/16/07	2-Aigh	Me	ral 0.6	-7/18/07
32	7/16/07	2-High	Medium Box	0.65	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1/20/05	5-Low	Wrap Bag	0.56	1/20/05
69	6/4/05	4-Not Specifind	Cmall Dack	0.44	6/6/05
69	6/4/05	4-Not Spec	quantitative	0.6	6/6/05
70	12/18/06	5-Low 4		0.59	12/23/06
70	12/18/06	5-Low	ordinal	0.82	12/23/06
96	4/17/05	2-High		0.55	4/19/05
97	1/29/06	3-Medium n	nominal	0.38	1/30/06
129	11/19/08	5-Low		0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06

Encoding: Mapping Data to Visualization

Marks, Channels, \& Encoding

Encoding: Map data to visual structure

Marks: Graphical primitives that encode items / entities

Channels: Properties of mark appearance, often used to encode attributes or other information

Marks: Graphical primitives that encode items or entities

Channels: Properties of mark appearance, often used to encode attributes or other information

Θ Magnitude Channels: Ordered Attributes
Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)
Θ Identity Channels: Categorical Attributes Spatial region

Color hue

Motion

Shape

We can Construct a Mapping of Data Values to Perceptual Channels

Encodings of Common Charts

Bar Chart: Show relative counts

Encoding: quantitative value is mapped to height of rectangle on a common scale

Nominal value is mapped to x position

UFO Sightings in AZ
Marks: rectangles

Consider rotating for text readability

Marks: rectangles

Encoding: quantitative value is mapped to width of rectangle on a common scale

Nominal value is mapped to y position

UFO Sightings in AZ

Line Charts: Show trends

Marks: lines

Encoding: quantitative value is mapped to y-position of line endpoint.

Temporal value is mapped to x-position

UFO Sightings in AZ

Scatter Plots: show correlation

Marks: points

Encoding: two quantitative value is mapped to x and y position respectively

Histograms: show distribution

Marks: bars

Encoding: x position denotes range of calories, y position denotes number of drinks in that calorie range

Vega-Lite

Why Vega-Lite?

At Hackathons, I noticed most projects with visualization used basic charts and some projects had streaming data.

Vega-Lite is a lightweight, robust library when it comes to quickly creating basic charts from data.

Vega-Lite has support for streaming data (not covered in this workshop)

Let's go through this together!

If you have not already, download the workshop files: https://bit.ly/ResBazVisWorkshop

Unzip the file and open "template.html" in a web browser

Veg-Lite can be embedded in a webpage

<!DOCTYPE html>

<html>
<head>...</head>
<body>
<div id="vis"></div>
<script>
var spec \(=\) \{ ...JSON specification here... \}; vegaEmbed('\#vis', spec);
</script>
</body>
</html>

General JSON Syntax: Lists

JSON has two structures, an unordered object \{\} of key-value pairs and an ordered list [] of items, both are comma separated

List Example
[
"zero",
"one",
"two",
"three",
"four"

]

Missing commas often lead to strange error messages

Back
Forward
Reload
Save As...
Print...
Cas...
Translate to English
View Page Source
Inspect
Speech

General JSON Syntax: Objects

JSON has two structures, an unordered object \{\} of key-value pairs and an ordered list [] of items, both are comma separated

Object Example
"key1": 12.2,

number
"key2": "text here", \square text (needs quotes)
"key3": [1, 2, 3], list
"key4": \{"key1": 0.0 \}, another object
"key5": true true or false

General JSON Syntax

JSON has two structures, an unordered object \{\} of key-value pairs and an ordered list [] of items, both are comma separated

Object Example
"key1": 12.2,
"key2": "text here",
"key3": [1, 2, 3],
"key4": \{ "key1": 0.0 \},
"key5": true

List of Objects Example
[
\{ "id": 0,
"name": "foo"
\}, comma
\{ "id": 1,
"name": "bar"
\}
]

Anatomy of a Vega-Lite specification

Data can be a URL/file, variable name, or inline

```
"data": { "url": "data/mydata.json" }
"data": { "values": variable_name }
"data": {
    "values": [
                { "id": 0, "foo": 7, "bar": "peas" },
                { "id": 1, "foo": 3, "bar": "carrots" },
                { "id": 2, "foo": 6, "bar": "carrots" },
                { "id": 3, "foo": 5.5, "bar": "peas" }
    ]
}
```


Several marks available

\{

"mark": "point",

\}

area	rect
bar	text
circle	geoshape
line	boxplot
point	errorbar
rule	errorband
square	
tick	

Tooltips

From encodings:
\{
"mark": \{ "type": "point", "tooltip": true \} \}

From data:
\{
"mark": \{ "type": "point", "tooltip": \{ "content": "data" \} \}
\}

Small Example

var small $=$ [
\{ "weather": "sunny", "temp": 35 \},
\{ "weather": "sunny", "temp": 38 \},
\{ "weather": "sunny", "temp": 41 \},
\{ "weather": "partially sunny", "temp": 29 \},
\{ "weather": "partially sunny", "temp": 34 \},
\{ "weather": "rainy", "temp": 30 \},
];
This data is in resbaz_az.js

Exercise: Now that we've seen the small dataset, try a larger one

Replicate this plot with the Kaggle Starbucks nutritional information data. Don't forget to add a tooltip!

```
"data": {
    "values": drinks
}
```


Encoding: Mapping Data to Channels

X
y
x2
y2
xError
yError
xError2
yError2

Exercise: Let's encode Caffeine (mg) with size or color

Caffeine (mg)

- 50
- 100
- 150
- 200
- 250
(300

Caffeine (mg)

Aggregation of Data

count	min	"encoding":
sum	max	"x": \{
mean	valid	"field": "column_name",
average	missing	"type": "quantitative",
median	distinct	"aggregate": "average"
variance	...more...	$\}$
stdev		

See also binning (histograms) and other transforms... https://vega.github.io/vega-lite/docs/encoding.html

Exercise: Can you replicate the chart with the Starbucks Data?

Exercise: Replicate this chart

Aggregation of Data - Histograms

count	min
sum	max
mean	valid
average	missing
median	distinct
variance	$. . . m o r e . . . ~$
stdev	
stderr	

```
"encoding": {
        "x": {
            "field": "column_name",
            "type": "quantitative",
            "bin": true
        },
    "y": {
            "type": "quantitative",
            "aggregate": "count"
        },
}

\section*{Exercise: Can you replicate this histogram with the Starbucks Data?}


\section*{Temporal Data}

We can set a timeUnit in the encoding to group data and then represent its aggregate: 11
 "timeUnit": "yearmonth", "type": "temporal"
\}
"y": \{
"aggregate": "count", "type": "quantative"
\}


\section*{Exercise: Create this chart with the UFO Data}

UFO Sightings in AZ



\section*{Acknowledgements}

This workshop is based on the tutorials and documentation at https://vega.github.io

Data Visualization basics are based on Visualization Analysis and Design, by Tamara Munzner

This workshop was funded by the National Science Foundation, under project NSF IIS-1844573```

